
Eliminate enterprise
software designinstability-
protect variations!

NickolayKofanov

Owning a hammer doesn't make one an
architect.

Responsibility-Driven-Design
The way of thinking about the design of software

objects (and also larger-scale components) in terms
of responsibilities,roles, andcollaborations

A critical ability in OO development is to skillfully

assign responsibilities
to software objects.

GeneralResponsibilityAssignmentSoftwarePatterns

graspthese principles
to successfully design
object-oriented software.

GRASP #1 Creator

Question: Who should be responsible for creating a new instance of some class

GRASP #2 Information Expert

Question: What is a general principle of assigning responsibilities to objects

2 common patterns that are most often used subconsciously

GRASP #3 Low Coupling

Question: How to support low dependency, low change impact, and increased reuse?

GRASP #4 High Cohesion

Question: How to keep objects focused, understandable, and manageable, and as a side
effect, support Low Coupling?

Yin und Yang of software engineering

High Cohesion + Low Coupling = Code Orthogonality

The killer combination in components of
tightly defined responsibilities
together with
independence from the wider system

Improve cohesion? - GRASP #6 Pure Fabrication
Question: What object should have the responsibility, when you do not want to violate High Cohesion
and Low Coupling, or other goals, but solutions offered by Expert (for example) are not appropriate?

Question:
Where to assign a responsibility, to avoid direct coupling between two (or more) things?
How to de-couple objects so that low coupling is supported and reuse potential remains higher?

Improve coupling? ςGRASP #5 Indirection

" Most problems in computer science can be solved by another level
of indirection "

Poly(multiple)-morph(form)-ism

GRASP #7 Polymorphism
Question:

How to handle alternatives based on type?
How to create pluggable software components?

GRASP Controller != MVC Controller
&&
(

GRASP Controller instanceof App/ Domain service
||
GRASP Controller instanceof Domain Model

)

Question: What first object beyond the UI layer receives and coordinates ("controls") a system operation

GRASP #8 Controller

GRASP #9 Protected Variation

Question: How to design objects, subsystems, and systems so that the variations or instability in these

elements does not have an undesirable impact on other elements?

Identify points of predicted variation or instability and
assign responsibilities to create a stable interface around them.

Almost every software or architectural
design trick/principle/pattern

is a specialization ofProtected Variations

Simple exampleΧ uper Delivery!
Requirement for the release v1.0:
Ukraine only shipment with

Requirement for the release v2.0:
International shipment with

Arrange Delivery Use Case:
1. Create new parcel
2. Send parcel to address
3. Χ

Arrange Delivery Use Case:
1. Create new parcel
2. Send parcel to address
3. Χ

Something is wrong hereΧ

Coupling to concrete class

Do the right thing (analysis);
Do the thing right (design)

